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A generalized thermodynamic analysis and a geometric interpretation ofpotential-pH diagrams for 
multi-element systems are presented. The presence of reactive gases, e.g. CO2 and SO2, and 
complex-forming species, e.g. NH3 and CI-, are expressly considered. The equilibrium state is 
described by a set of independent formation reactions of all species containing the active redox 
element, M. The formation reactions are written in terms of a user-specified set of primitive species, 
e.g. M, H20, H +, e, X and Y, where X and Y could be CO2 and C1- for example. Some of these 
primitive species, e.g. M and e, may be virtual species, that is, they do not have an independent 
existence as separate entities in the reaction mixture. This procedure permits an explicit algebraic 
solution for the potential-pH diagram. Examples of Pourbaix and predominance diagrams for 
complex uranium and chromium systems are given. 
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Subscripts 
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1. Introduction 

Potential-pH diagrams have long been used to describe phase stability in aqueous redox systems 
[1-4]. They have found widespread use in corrosion studies, geochemistry and hydrometallurgy. In 
recent years, significant work has been expended in the construction of potential pH diagrams by 
computer [5-17]. These efforts require a systematization of the chemical thermodynamic theory 
underlying the diagrams and a clear idea of the assumptions necessary to perform the computations. 

A thermodynamic framework and computational method for constructing potential-pH dia- 
grams have recently been presented by one of the authors [17]. That work was, however, restricted 
to the relatively simple case in which the system is comprised only of the redox element, M, plus 
hydrogen and oxygen. In the present paper we generalize the methods to include other elements that 
may be present, for example, in reactive gases, e.g. SO2 and CO2, and complex-forming dissolved 
species, e.g. NH3 and C1 . 

First, a general thermodynamic analysis and geometric interpretation of potential-pH diagrams 
are presented. Second, computational methods are discussed and rigorous algebraic solutions are 
presented for systems containing additional elements. Third, examples of several multi-element 
computer-generated potential-pH diagrams are given. 

2. Discussion of prior work 

For the three-element ( M - H - O )  system, the Pourbaix diagram is a three-dimensional surface in 
Chemical potential space [17]. The three axes are the chemical potentials of the electrons, the protons 
and the redox element, M. By convention, practical measures of these chemical potentials are used, 
i.e. the electrode potential, E, the pH and the logarithm of the activity, aM, of the redox element, 
M. Also, by convention, the two-dimensional projection on the E -pH plane of the three-dimensional 
figure is normally reported. 

Because the analysis in [17] was restricted to simple three-element systems, the influence of 
reactive counter ions, e.g. C1-, and reactive gas phases, e.g. CO2, was ignored. All counter ions were 
assumed to be totally inert and the gas phase, if present, was tacitly assumed to contain only inert 
gases and the equilibrium partial pressures of H2 and 02, fixed by the prevailing pH and potential. 
These restrictions, while widely employed, exclude many situations of great practical importance. 

3. Thermodynamic analysis 

3.1. Chemical reaction equilibrium 

In choosing a set of independent reactions, it is essential that no a priori assumptions about 
'dominant' reactions or 'major' species be made that limit the generality of the results. Furthermore, 
for computational simplicity and generality the reaction scheme should permit the addition or 
deletion of species without changing the mathematical structure of the solution. 

The set of independent reactions is generated by writing (n - 1) formation reactions for the n 
species containing the active redox element, M. The formation reactions are written using the 
primitive species M, H § H20, X, Y and e. The formation reactions for Mi are written in the 
following standard form: 

M = viMi -I- will20 -I- hi H+ -t- xiX -1- YiY + zie (1) 

For example, consider the formation reaction for FeCO3: 

Fe = FeCO3 - H20 + 2H + - CO2 + 2e (2) 
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where the following assignments are made: M = Fe, M~ = FeCO 3, X = CO2; vi = + 1, 
w i = - 1, h i = -I-2, xi = - 1, Yi = 0 and zi = + 2. 

Writing the formation reactions in this form has several advantages, e.g. the resulting equilibrium 
equations are particularly well suited for determining phase stability (see Section 3.6) and the set of 
equilibrium equations can be solved sequentially rather than simultaneously upon specification of 
the appropriate activities (see Sections 4.1.1 and 4.2). Furthermore, writing all equations per atom 
of M gives the stoichiometric coefficients a simple meaning, e.g. the stoichiometric coefficient, z~, for 
the electrons is equal to the electrochemical valence of element M in species Mi. 

3.2. Primitive species 

There is an element of arbitrariness in the choice of primitive species. For example, for systems 
containing carbonates one could choose either CO2 gas, H 2 C O  3 o r  the CO3 z- or HCO~ ions. If CO~ 
gas pressure is being controlled then CO2 gas is the obvious choice. If the CO 2- concentration is 
controlled then CO~- is the logical primitive species. For systems in complete chemical equilibrium, 
i.e. gaseous systems at very high temperatures, the most useful choice of primitive species is often 
the elements themselves. For example, for very high temperature hydrocarbon gases, a set of 
independent reactions can be written by writing formation reactions for all compounds, molecular 
fragments and ions from elemental carbon, hydrogen and electrons. The general procedure of 
writing a set of independent reactions by writing formation reactions from primitive species is not 
new and has been used by Brinkley [18] and discussed by Denbigh [19] among others. 

It would be tempting to conclude that the number of primitive species is always equal to the 
number of elements plus one for any system that contains charged species. This is, in fact, true for 
the high temperature gaseous system mentioned above when complete chemical equilibrium among 
all possible species is approached. However, at low temperature the persistence of functional groups 
as stable and metastable entities negates this simple rule. For example, an aqueous system contain- 
ing copper in which the only reactive counter ions are CN-  would have five elements, Cu, H, O, C 
and N. Only five primitive species, Cu, H § H20, CN-  and e, would be required to describe the 
complete reaction set. 

It is clear that writing the set of independent reactions requires extrathermodynamic consider- 
ations and can only be performed with an understanding of the chemistry of the system of interest. 

3.3. Virtual species 

Not all of the primitive species need to exist physically as independent entities in the system. Even 
if they are not physically present, their chemical potentials can be well defined. Species of this type, 
which we call virtual species, are included to generalize the formalism and to simplify the comput- 
ations. The most common example of this procedure is the separation of redox reactions into half 
cell reactions involving electrons. The free electrons do not exist as distinct entities with a measur- 
able concentration in aqueous reaction mixtures, yet their chemical potential is well defined and 
measurable. The chemical potential of an element is also a well defined quantity even when it is not 
physically present as the free element in a reaction mixture. This has been pointed out by White [20] 
for gas phase systems and by Angus [17] for the aqueous redox systems of interest here. 

3.4. Phase rule analysis 

For chemically reacting systems the phase rule may be written 

f = s -  r - P + 2  (3) 

where s is the total number of species (both real and virtual), r is the number of independent 
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reactions that can be written among the real and virtual species and P is the number of phases. 
We apply the phase rule to a system with n species containing M. In addition to M there are the 

other five primitive species, H 2 0  , H + , e, X and Y, which are needed to write the formation reactions. 
Substituting into Equation 3: 

f = (n + 5) - ( n -  1) - P + 2 (4) 

f = 8 - P (5) 

When both temperature and pressure are fixed, Equation 5 becomes 

f = 6 - P (6) 

For systems comprised only of the elements, M, H and O, the primitive species X and Y are not 
necessary and Equation 6 reduces to f = 4 - P, the result given in [17]. 

It may happen that the primitive species react with one another. For example 

xX + yY = bB 
o r  

H + + OH-  = H 2 0  

In all of these cases there is one additional reaction and one additional species, e.g.B. Consequently 
the phase rule analysis remains unchanged, assuming B is not a solid phase. Also, as noted in [17], 
no provision is made to ensure electroneutrality. Again, this condition imposes one more equation 
and one more species, an inert counter ion, leaving the analysis the same. 

Equations 4, 5 and 6 follow from the situation when the chemical reaction equilibria can be 
written using six primitive species as in Equation 1. These cover most situations of practical interest. 
However, if a more general formalism is required, one can simply generalize these results. For 
example, the general chemical reaction in standard form would be 

t 2 

M = v i M  i -4- Z PiJPJ -}" zie (7) 
J 

where Pj are the (t - 2) primitive species required in addition to the electrons, e, and M. For fixed 
temperature and pressure the general form of the phase rule becomes 

f = t - P (8) 

where t is the total number of primitive species required to describe the stoichiometry. 
The key element in determining the number of independent variables is writing the independent 

chemical reactions in terms of appropriate primitive species. This cannot be done using thermo- 
dynamic theory alone and must involve a good understanding of the nature of the system in 
question. The phase rule provides the logical machinery to convert an essentially heuristic under- 
standing of the system chemistry into a formal statement of the number of independent variables. 
In this sense the phase rule is not truly a predictive theory. 

3.5. Dimensionality of diagrams 

Potential-pH diagrams are a special type of a phase diagram in which each dimension is a chemical 
potential. Equation 8 specifies the number of chemical potentials that may be independently chosen 
and, hence, specifies the number of dimensions of the diagrams. Setting P = 1 (the minimum 
number of phases) gives the maximum number of dimensions, D, required to represent graphically 
the diagram. 

D = t -  1 (9) 

For systems comprised solely of M, H and O, four primitive species are required to write the 
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chemical reactions: M, H +, H20 and e. Therefore t = 4 and the chemical potential diagram is 
inherently three-dimensional. When six primitive species are required, the diagram is five-dimensional. 
In order to reduce it to three dimensions, the chemical potentials of two of the primitive species must 
be fixed at constant values. 

3.6. Phase stability 

Consider two solid species, M u and Mv, in contact with the same aqueous phase. Initially assume 
that Mu and M v are separately in equilibrium with the primitive species M, H +, H20, X, Y and e. 
Therefore, from Equation 1 one has two equilibrium relationships, one for solid Mu and one for 
solid My: 

(#m)u = Vu#u + Wu#H20 + hu/tH+ + Xu/~X + Yu#Y q- Zu#e (10) 

(#r~)v = Vv#v + Wv/~,20 + hv#a+ + Xv#x + y+#+ + Z+#e (11) 

where (#M)u and (/~M)v are the chemical potentials of M within solids Mu and Mv, respectively. 
We consider the situation encountered both physically and computationally when the potential, 

the pH and the activities of both X and Y are held constant. However, for a three-phase system the 
phase rule (Equation 6) indicates that only three of these variables can be arbitrarily fixed. Since four 
chemical potentials have been specified, the system is overspecified and one of the solid phases must 
disappear. The stable solid phase can be determined by computing the overall free energy change, 
AG, for the transition between the phases. Writing Equation 1 for both Mu and Mv and eliminating 
the element M, one has 

vuMu + wuH20 + hu H+ + xuX + yu Y + zue = vvMv + wvH20 + hvH + + xvX + yvY + Zve 

(12) 

The free energy change for this reaction is 

AG = Vv/~v - vu/tu + (Wv - wu)/z.2 o + (hv - hu)#r~+ 

-{- (Xv - -  X u ) # X  -[- (Yv  - -  Yu)/ ' /Y -[- (Zv - -  Zu) lle (13 )  

However, using Equations 10 and 11, Equation 13 can be reduced to 

AG = ( /~a)v-  (#M)~ (14) 

Equation 14 shows that the free energy change for the transition between two solid phases is equal 
to the difference in the chemical potential of the redox element within the solid phases. When the 
two solids, M, and Mv, are in equilibrium, AG = 0 and therefore (#M). = (#M)v- The chemical 
potential of any solid phase, M s, can be computed directly from Equation 34. Therefore, Equation 
14 provides an extraordinarily simple test for the stability of solid phases. 

Furthermore, using Equation 33 the method can also be used to determine the stability of a solid 
with respect to an aqueous phase. In principle one can, of course, determine the stability of a solid 
phase by comparing the value of activity, G, of solid M s with the activity of Ms in the solution. 
However, very often the solid species does not exist as such in the dissolved state. In these situations 
the chemical potential of active element is an easier criterion to apply. 

4. Calculations of equilibrium composition 

4.1. Summary of  basic equations 

4.1.1. Equations for species containing active element. The basic equilibrium criterion for reaction 1 
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i s  
f M  = V i f  i + WifH20 + h i f H +  -I- X i f  x -I- Y i # v  + Z i f~  (15) 

If all of the chemical species are maintained in their standard states, Equation 15 becomes 

fo  = vif0 + w,f 2o + hifo+ + xifo + y fO + zif0 (16) 

where the term foe is the equilibrium chemical potential of electrons obtained when the chemical 
species in reaction 1 are held at their standard states. Subtracting Equation 16 from Equation 15 
and rearranging gives: 

f 0 )  = _ f o )  _ wi(f. o - f ~  - h , ( f H +  - -  f o + )  

__ X i ( f  x __ f O )  __ Y i ( f Y  - -  ]20) - -  Z i ( f e -  flOe) ( 1 7 )  

We are mainly interested in the activity, a~, of M~. The chemical potential and standard chemical 
potential of M~ are always related by a~. 

f~ = #o + R T l n  a~ (18) 

Combining Equations 17 and 18 and solving for a~ ~ one finds: 

@ = exp{(Rl----T)[(fM- f ~  hi(~n+- #~ Wi(#H2O - f~ 

- -  X i ( f X  - -  / AO) - -  Y i ( f Y  - -  f O )  __ Z i ( f  e __ foe)]} (19) 

The generalized form of Equation 19 for an arbitrary number, t, of primitive species is clearly 

a~ ~ = exp (#M-- #o) _ 2P iJ (#J - -  #~) - z~(fe-- foe) (20) 
J 

Equations 19 and 20 give the activity of M~ in terms of the chemical potentials of the primitive 
species. They are the basic equilibrium equations upon which the calculations are based. Note that 
only differences in chemical potentials appear in Equations 19 and 20. Absolute values of chemical 
potential, which are not accessible, are not required. 

4.1.2. Discussion o f  potential  and f ree  energy conventions. Here we discuss the conventions used to 
relate the theory to measurable quantities such as potential differences. The usual approach is to 
report the difference between the chemical potential of the electrons, re, in equilibrium with reaction 
1 and the chemical potential of electrons in equilibrium with a reference electrode. For the standard 

I-H the equilibrium expression is hydrogen electrode, H + + e = 2 ~, 

0 1 0 fn+ + f~ = -~fn2 (21) 

Combining Equations 16 and 21, one finds 

- z i ( #  ~  f : )  = [vif ~ + w~f~ + h~f~+ + xaf ~ + y~fO_ fo]  + z~(fo/2 _ fo+) (22) 

The convention used for relating #~ to E, is 

fe ~" - F E  (23) 

This convention differs only in sign from that proposed by Ramsey [21]. We choose the opposite 
sign convention to be consistent with virtually all other punished potential-pH diagrams. Further- 
more, it appears logically more consistent with simple qualitative arguments, i.e. high (positive) 
chemical potentials of electrons, which correspond to large 'escaping tendency' of electrons [22], 
should correspond to negative electric potentials. 
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From Equation 23 and Equation 22, one finds 

z lF 1 E0 _ E r _ [vi#i0 _~_ Wi#020 _~. hi#O+ + xi#O + yi#O _ #o] + ~(#o2/2 _ /to+) (24) 

where E ~ - - #~  is called the standard electrode potential for the formation of species M~ by 
reaction 1. Furthermore, if the reference electrode is held at fixed unchanging conditions, the E r, # o  
and 0 #H+ are constant. For  the standard hydrogen electrode it is customary to arbitrarily assign 
E r = 0 and (#o2/2 - #o+) = 0, leaving 

1 
El~ - z iF  [vi#~ + Wi#0H20 + hi#~ q- xi#0X -~- y i # ~  --  # o ]  (25)  

This convention is permissible precisely because only differences in potential enter into normai 
thermochemical computations, i.e. absolute potentials are not required. 

Equation 25 can be used with a self-consistent set of free energy of formation data (#0 = AG~n) 
to compute values of Ei ~ This is the procedure used here to convert tabulated standard free 
energies of formation into standard potentials for use with our working equations. 

Finally, note that the bracketed term on the right hand side of Equation 25 is the AG O for the half 
cell reaction 1 as conventionally defined, i.e. considering only chemical species. Therefore, with our 
conventions, 

AG o 
Ei 0 - zi F (26) 

This convention is identical to that used in Pourbaix's Atlas [2]. 

4.1.3. Practical variables. The following conventions are used to relate the chemical potential 
differences of the other primitive species to practical variables: 

0 -- 2.30259RT(pH) (27) # n  - # n +  = 

#n20 -- #02O = R T l n  an2o (28) 

#x - #~ = R T l n  ax (29) 

(30) # y  _ # o  = R T  ln  a y  

If primitive species, X, is a dissolved species, then ax = "/x[X]. If  X is a gas, then ax = fx,  where 
Jx is the fugacity of X and the standard state for X is chosen to be pure X in the ideal gas state at 
unity fugacity. I fX  is a pure solid, and this pure solid is chosen to be the standard state, then ax = I. 

4.2. Summary  o f  working equations 

4.2.1. Assumptions. Equations 27-30 are rigorously correct under all circumstances. It is extremely 
convenient, however, to replace Equation 28 with 

#n2o - #o20 = 0 (31) 

Equation 31 is an assumption that is only approximately correct even at low concentrations. This 
assumption is implicit in many prior calculations of equilibria in aqueous systems and will be used 
here as well. It is often justifiable on the grounds that it introduces no greater error than the 
assumption of ideal solutions, which is also often made for lack of knowledge of activity coefficients. 
However, for accurate work it is necessary to include the activity of H20 as a variable. Including 
aH20 as a variable complicates the calculations and, in fact, forces one to perform an iterative 
numerical solution for each equilibrium composition rather than a sequential algebraic solution. 
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The chemical potentials of ah of the real species including H20 must be related through the 
Gibbs-Duhem equation. This relationship would normally be introduced through the functional 
form of the equation for the activity coefficients which, if correct, must obey the Gibbs-Duhem 
equation. It is this additional relationship, not explicitly used here, which is replaced by Equation 
31. 

4.2.2. General equilibrium equation in practical variables. The ai can be determined in terms of 
practical variables by combining Equations 19, 23, 27, 29, 30 and 31. 

[ j  1 a~ i = exp #M O + 2.30259hi(pU) -- x i l n a x - -  y i l n a v  + ~ ( E - -  S ~ (32) 

4.2.3. Equilibrium in aqueous phase. The chemical potential of M in the aqueous phase can be 
obtained exactly as in [17] by summing Equation 32 over all dissolved species and solving for 
(#M -  ~ 

RT Jaq 
- In Z exp I2.30259he(pH) - x a In a x  

zaF E ] 
- yalnav+ -R~ ( - E~) + ln(Ea~ d) 

(33) 

The sums in Equation 33 are over the dissolved species, Ma. Equation 33 clearly shows that the 
chemical potential, #M, of M is well defined even when M does not exist as the free element in the 
aqueous phase. 

4.2.4. Equilibrium between one solid and the aqueous phase. Here, only the case of a pure solid phase, 
Ms, tbr which the activity is unity is considered. Setting the left hand side of Equation 19 equal to 
one, using Equations 23, 27, 29, 30 and 31 and solving for (#M -- #~ one finds 

] zsF #M~TP~ = --2.30259hs(pH) + x~lnax + y ~ l n a  v -  ~ - ~ ( E - -  E ~ 
S 

(34) 

Equation 34 gives the chemical potential of M in the solid phase, Ms, as a function of pH, ax, ay 
and E. Eliminating (PM -- #~ between Equations 32 and 34, one obtains 

a~ d = exp{2.30259(ha-  h~)(pH) - ( x a -  x ~ ) l n a x -  ( y a -  Y~)lnay 

+ E~ - z s (E-  E~ (35) 

Equation 35 gives the activity of M a in equilibrium with M s. 

4.2.5. Equilibrium between two solids and the aqueous phase. We next consider the equilibrium 
between two solids, Mu and My, and the aqueous phase. Equation 34 is written for each solid and 
equated since (#u -- #~ = (#M -- #~ if the two phases are in equilibrium. The result- 
ing equation is solved for E. 

EZu  8 - zvE ~ 
e =  Tu T v j  + 

(RT/F) 
(Z u - -  Zv) 

[(Xu - Xv) In ax + (yu - Yv) In av - 2.30259(hu - hv)(pH)] 

(36) 

Equation 36 is the equation for the three phase lines that appear on Pourbaix diagrams. Substituting 
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E q u a t i o n  36 in to  E q u a t i o n  35 one  o b t a i n s  the  e x p r e s s i o n  fo r  the  ac t iv i ty  o f  any  d i s so lved  species  
M d in e q u i l i b r i u m  wi th  two  so l id  phases ,  M~ a n d  My.  

a~d = e x p { (  l z v -  Z u ) {  2"30259(pH)[zv(hd - hu) + zu(hv - hd) + zd(hu - hv)] + [zv(x~ - xd) 

+ zu(xo - Xv) + Zd(Xv --  Xu)] In ax + [Zv(Yu --  Yd) + Zu(Yd -- Yv) + zo(Yv -- Yu)] in av 

F [ZvEOv(Zd_Zu) q . _ Z u E O u ( z v _ Z d ) q _ z d E O ( z u _  Z v ) ] ; ;  (37) 
)3  

4.2.6. Equil ibrium between three solids and an aqueous phase.  W h e n  th ree  so l ids  a n d  an  a q u e o u s  
p h a s e  co -ex i s t  a t  c o n s t a n t  T a n d  p the re  wil l  be,  a c c o r d i n g  to  E q u a t i o n  8, t - 4 degrees  o f  f r e e d o m .  
In  the  cases  we c o n s i d e r  here ,  t = 6, a n d  c o n s e q u e n t l y  a t  the  f o u r - p h a s e  p o i n t  the re  a re  t w o  degrees  
o f  f r eedom.  I f  the  ac t iv i t ies  o f  X a n d  Y a re  each  fixed,  t hen  al l  o t h e r  in tens ive  t h e r m o d y n a m i c  
p r o p e r t i e s  a re  fixed, i n c l u d i n g  E a n d  p H .  I t  is ve ry  usefu l  to  have  expl ic i t  a l g e b r a i c  e x p r e s s i o n s  fo r  
E a n d  p H  in t e rms  o f  ax a n d  av a t  these  f o u r - p h a s e  po in t s .  T h e s e  c a n  be o b t a i n e d  by  wr i t i ng  
E q u a t i o n  34 fo r  each  o f  the  th ree  so l id  p h a s e s  Mr ,  Mu a n d  My.  T h e  r e su l t i ng  th ree  e q u a t i o n s  are  
used  in the  e q u i l i b r i u m  expres s ions  to  o b t a i n  t w o  exp re s s ions  be tween  E a n d  p H .  

Rr It = o =  \ R-r L 

These  are ,  in  tu rn ,  so lved  fo r  E a n d  p H .  T h e  f inal  resul ts ,  a f t e r  m u c h  m a n i p u l a t i o n ,  are:  

= { o 0 ztEtO(hu _ hv ) ht ) xv(h t hu ) E zuE~(hv - ht) + z v E ; ( h t -  ha) + + [xu(hv - + - 

+ x t ( h u -  h , , ) ] ( - ~ - ) l n a x + [ y u ( h , , - h t ) + y v ( h t - h u ) +  y t ( h u -  h v ) ] ( - R ~ - ) l n a v }  A-1  

(39) 

p H  = - { z u E ~  - zt) + z v E ~  zu) + z tE~ - z v ) l ( F / R r )  + [x.(zv - zt) + x~(zt- zu) 

+ xt(Zu - Zv)] In ax + [yu(Zv --  zt) + yv(Zt - Zu) -1- yt(Zu - 2v)] In a v } ( 2 . 3 0 2 5 9 A )  

where 
(40) 

A =- z u ( h v  - ht) + z v ( h ,  - hu) + z t ( h u  - hv) (41) 

Table 1. Solid species containing U, H and 0 

Species eli hi w i xi zi E ~ Source 

U 1 0 0 0 0 0 [24] 
UO 2 1 4 -- 2 0 4 - 1.444 [24] 
U409 4 4.5 - 2.25 0 4.5 -- 1.233 [24] 
U307 beta 3 4.6667 - 2.3333 0 4.6667 - 1.172 [24] 
U308 3 5.3333 - 2.6667 0 5.3333 - 0.954 [24] 
UO3-gamma 1 6 - 3 0 6 - 0.751 [24] 
UO 3-alpha 1 6 - 3 0 6 - 0.741 [24] 
UO3-beta 1 6 - 3 0 6 - 0.744 [24] 
UO3 �9 H20-beta 1 6 - 4 0 6 - 0.771 [24] 
UO 3 �9 2H20 1 6 - 5 0 6 - 0.769 [24] 
UO2(OH) 2 beta 1 6 - 4  0 6 -0.7719 [25] 
UO2(OH)2 �9 H20 1 6 - 5 0 6 - 0.7735 [25] 
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4 . 3 .  D a t a  s o u r c e s  

T h e  w o r k i n g  e q u a t i o n s  ( S e c t i o n  4 . 2 )  r e q u i r e  a s t a n d a r d  p o t e n t i a l ,  E ~  a n d  a s e t  o f  s t o i c h i o m e t r i c  

c o e f f i c i e n t s ,  v~, h i ,  x~, Yi a n d  zi f o r  t h e  f o r m a t i o n  r e a c t i o n  f o r  e a c h  s p e c i e s  M i. T a b u l a r  d a t a  u s e d  i n  

t h e  c a l c u l a t i o n s  a r e  s h o w n  i n  T a b l e s  1 t h r o u g h  5 f o r  t h e  u r a n i u m  s p e c i e s  a n d  i n  T a b l e s  6 t h r o u g h  

8 f o r  t h e  c h r o m i u m  s p e c i e s .  

Table 2. Dissolved species containing U, H and 0 

Species a i h~ w e x i zi E~ Source 

U 3+ 1 0 0 0 3 - 1.642 [24] 

U 4+ 1 0 0 0 4 - 1.376 [24] 

U O H  3+ 1 1 - 1 0 4 - 1.483 [26] 

U O ~  1 4 - 2 0 5 - 1.0125 [24] 

UO~ + 1 4 - 2 0 6 - 0 .828 [24] 

UO~(OH)2  1 6 - 4 0 6 - 0.551 [24] 

U(OH)~  + 1 2 - 2 0 4 - 1.3426 [251 

U ( O H )  + 1 3 - 3 0 4 - 1.3039 [25] 

U ( O H ) 4  1 4 --  4 0 4 - 1.2499 [25] 

U(OI-I)5 1 5 - 5 0 4 - 1.1819 [25] 

V6(OH)~ ~ 6 2.5 - 2.5 0 4 - 1.3336 [25] 

U O 2 O H  + 1 5 - 3 0 6 - 0 .7695 [25] 

(UOz)2(OH)~ + 2 5 - 3 0 6 - 0 .7988 [25] 

(U02)3 (OH)~- 3 5.6667 - 3 .6667 0 6 - 0 .7752 [25] 

Table 3. Uranium carbonates 

Species o~i hi w i x i z i Ei ~ Source 

Sol id  

U O a C O  3 1 6 - 3 - 1 6 - 0.7901 [25] 

Dissolved 

U O z C O  3 1 6 - 3 - 1 6 - 0 .7467 [25] 

UO~ (CO3)~ 1 8 - 4 - 2 6 - 0 .6359 [25] 

U O  2 (CO3)4 1 10 - 5 - 3 6 - 0 .5006 [25] 

Table 4. Sol id  uranium fluorides 

Species ~i hi wi xi z i E ~ Source 

UF3 1 0 0 - 3 3 - 2.063 [24] 

UF4  1 0 0 - 4 4 - 1.835 [24] 

U F  4 �9 2 . 5 H 2 0  1 0 - 2.5 - 4 4 - 1.889 [24] 

U O F  2 1 2 - 1 - 2 4 - 1.643 [24] 

U O F  z �9 H 2 0  1 2 - 2 - 2 4 - 1.651 [24] 

UF425 1 0 0 - 4.25 4.25 - 1.660 [24] 

UF45 1 0 0 - 4.5 4.5 - 1.500 [24] 

U F s - a l p h a  1 0 0 - 5 5 - 1.191 [24] 

U F  6 1 0 0 - 6 6 - 0 .684  [24] 

U O 2 ( O H ) F  " H z O  t 5 - 4 - 1 6 - 0 .850 [24] 

UO2 ( O H ) F  �9 2 H 2 0  1 5 - 5 - 1 6 - 0 .853 [24] 

UO2 Fz 1 4 - 2 - 2 6 - 0 .898 [24] 
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Table 5. Dissolved uranium f luorides  

Species o~i hi wi xl zi E ~ Source 

U F  3+ 1 0 0 - 1 4 - 1.5109 [25] 

UF~  + I 0 0 - 2 4 - 1.6048 [25] 

U F /  1 0 0 - 3 4 - 1 .6814 [251 

U F  4 1 0 0 - -  4 4 - 1.7559 [25] 

U F ; -  1 0 0 - 5 4 - -  1.7870 [251 

U F ~ -  1 0 0 - 6 4 - -  1.8311 [25 i 

U O 2  F+  1 4 --  2 --  1 6 - - 0 . 8 8 1 8  [251 

U O 2 F  z 1 4 - 2 - 2 6 - -  0 .9250  [25] 

U O 2 F  3 ! 4 - 2 - 3 6 - 0 .9536  [25 i 

U O 2 F  4 1 4 --  2 --  4 6 --  0 .9708  [25 i 

Table 6. Sol id species containing Cr, H and 0 

Species ~i hi wi x i z i Ei ~ Source 

C r  1 0 0 0 0 0 [27] 

C r20 3  2 3 - 1.5 0 3 - 0.611 [27] 

C r O  3 1 6 - 3 0 6 + 0 .344  [27] 

C r ( O H ) 2  1 2 - 2 0 2 - 0 .634  [27 i 

C r ( O H )  3 1 3 - 3 0 3 - 0 .544 [27] 

C r O  2 1 4 - 2 0 4 - 0 .169  [28] 

Table 7. Dissolved species containing Cr, H and 0 

Species c~ i h i w i x i z i E ~ Source 

C r  2+ 1 0 0 0 2 - 0 .954  [271 

C r  3+ 1 0 0 0 3 - 0 .779  [271 

C r ( O H )  2+ 1 1 - 1 0 3 - 0 .702  [27] 

C r ( O H ) ~  1 2 - 2 0 3 - 0 .578 [27] 

C r ( O H ) 3  1 3 - 3 0 3 - 0 .424  [27] 

C r  2 ( O H )  4+ 2 1 - t 0 3 - 0 .729 [27] 

Cr3(OH)45+ 3 1.333 - 1.333 0 3 - 0 .725 [27] 

C r ( O H ) ~ -  1 4 - 4 0 3 - 0 .239  [27] 

C r O y  1 4 - 2 0 3 - 0 .228  [27] 

CrO~  1 8 - 4 0 6 0 .375 [27] 

H C r O  2 1 7 - 4 0 6 0.311 [27] 

H 2 C r O  4 1 6 - 4 0 6 0 .32  [27] 

C r 2 0  ~- 2 7 - 3.5 0 6 0 .304  [27] 

CrO~  1 6 - 3 0 3 0 .374  [28] 

C r O ] -  1 8 - 4 0 5 0 .438 [29] 

The data were obtained from standard secondary sources listed in the tables. Standard potentials, 
Ei ~ were computed from standard free energies of formation using Equation 25 with #n ~ = AG~n. 
The data sets are believed to include all important species. However, obviously no guarantee can 
ever be made that a data set is, in fact, complete. 

It is interesting that in both of these relatively complex systems, no species were found in which 
six primitive species were required, i.e. no uranium species involving both F-  and CO2 and no 
chromium species involving both C1- and CO2. 
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Table 8. Chromium chlorides 

Species ~i hi wi xl z i Ei ~ Source 

Solid 
CrC12 1 0 0 - 2 2 - 0 .484  [27] 

C r C I  3 1 0 0 - 3 3 - 0.311 [27] 

Dissolved 

CrC1 + 1 0 0 - -  2 3 - -  0 .748 [27] 

CrC12+ 1 0 0 - 1 3 - 0 .762 [27] 

C r O H C 1 2  1 1 - 1 - 2 3 - 0 .636 [27] 

C r O 3 C 1 -  1 6 - 3 - 1 6 + 0 .303 [27] 

5. Construction of Pourbaix diagrams 

5.1. Structure of  Pourbaix diagrams 

When ax and ay are fixed, the Pourbaix diagram is a three-dimensional surface which divides the E. 
pH and log aM space into a region where a single aqueous phase exists, and an inaccessible region 
beyond the solubility limit. The surface is comprised of one or more curved surfaces where a single 
solid is in equilibrium with the aqueous phase. These surfaces intersect to form curvilinear lines 
along which three phases (two solids plus the aqueous phase) coexist. There are places where three 
surfaces come together at four-phase (three solids plus the aqueous phase) points. Each four-phase 
point is connected to three other four-phase points by three-phase lines. Connected four-phase 
points share a common pair of solids. 

A projection of the three-dimensional figure onto the E - p H  plane is normally reported. On this 
projection the three-phase lines and the contours of constant activity, aM, are plotted. 

When the solids are of constant composition, the three-phase lines are straight lines in the two 
dimensional E - p H  projection. This may easily be seen from Equation 36. The slope of Equation 
36 is -2.30259(hu - by)RT/F(zu - Zv). For systems containing only the elements M, H and O, 
one has h~ -- z~ for uncharged solid phases and consequently the slope is the same for all three-phase 
lines. In general, for more complex systems with additional elements, h~ # zs, and therefore the 
slopes of the various three-phase lines are not the same. 

5.2. Computation of four-phase points 

One first considers each possible triple, Mt, Mu, My, of solids. The E and pH of each possible 
four-phase point are computed using Equations 39, 40 and 41. At this value of E and pH the value 
of (#M -- #~ is calculated using Equation 34. Then (#M -- #~ is computed for all 
other solid phases. If (#M -- #~ < (#M -- # ~  for all other solids (M~) then this 
four-phase point is stable. Furthermore, if the values of E and pH are within the range plotted, e.g. 
- 3 V  < E < + 3 V  and - 2  < pH < 16, the point will appear on the E - p H  diagram. 

The number of computations at this stage of the calculation can be formidable. The total number 
of triples of solids, nw, that can be chosen from n~ solids is: 

ns!  
nT - (42) 

( n s -  3)!3! 

The number of possible solids can be 20 or more for complex systems. For n~ = 20, one has a total 
of 1140 triples that must be individually considered. 
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5.3. Determination of three-phase lines 

After the (E, pH) coordinates of all stable four-phase points are calculated and saved, the points are 
tested to see how they are connected with one another. Two four-phase points are connected by a 
three-phase line if the points share two common solid phases. The four-phase points can all be 
placed in three categories: (i) points within the E, pH range of  the diagram that are connected only 
to other points also within the range; (ii) points within the E, pH range of  the diagram which are 
connected to one or two points without the range; and (iii) points without the range that are 
connected to other points without the range. 

Points in the first category can be connected by the plotting routine without further consideration. 
Points in the second and third categories can be connected with points on the lines defining the 
boundary of  the diagram, e.g. E = - 3 V, E = + 3 V, pH = 0 and pH = 14. The E and pH values 
of the intersections of the three-phase lines (Equation 36) with these boundary values are computed. 
The intersection is kept if it falls within the range of  the diagram and if it meets the stability criterion, 
i.e. if (PM -- I~~ for this solid pair is less than that for every other solid phase. The diagram 
is completed by drawing straight lines between surviving intersections which share a common pair 
of solids. 

5.4. Computation of contours of constant activity or concentration 

In addition to the network of three-phase lines, contours of  constant activity, aM, of the active redox 
element can be projected onto the E - p H  plane. The activity is defined as in [17]: 

aM = Zad d (43) 

where the sum is taken over all dissolved species. Equation 43 is used tggether with Equation 37 to 
give the total activity at any point along one of the three-phase lines. The desired value of aM is chosen, 
e.g. 0.1, and the bisection method used to determine the points, if any, along the three-phase line 
and the boundary lines where this value exists. These points are used as the starting points for a 
routine that traces out the contours of  constant aM in the two-phase (solid plus aqueous) regions. 
Equations 43 and 35 are used with Newton's damped method to trace out the contours. These 
contours are not, in general, straight lines. 

If  activity coefficients are known, or can be assumed to be unity, the contours of constant 
concentration of active element can be traced out. In this event one uses the definition of the total 
concentration 

[M]T = Z0~d[Md] (44) 

together with Equations 35 and the relation ai = 7i[Mi]. Since a~ ~ = (?i[Mi]) vl and e~ -= 1/vi, 
Equations 43 and 44 are identical only when ?i = 1 and v i = 1 for all dissolved species. 

6. Construction of predominance diagrams 

The network of lines that divides the E - p H  field into regions of dominance of individual dissolved 
species is determined by the criterion 

ab b = a~ c (45) 

Using Equation 32 in Equation 45 one finds the relationship between E and pH for any arbitrary 
dissolved pair: 

E = ~ zbE~ - zcE~ + (RT/F) [(Xb -- Xc)In ax + (Yb -- Yc)In ay -- 2.30259(hb -- hc)pH] 
L zb z~ J zu - z~ 

(46) 
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It is important to note that Equation 46 is independent of the concentration of the active element. 
Except for the different interpretation of  the indices, Equation 46 is identical to Equation 36. 

Therefore, Equations 39 and 40 can be used to determine E and pH where three dissolved species 
have identical values of a~L 

The algorithm for constructing the predominance diagrams is almost identical to that for 
constructing the network of three-phase lines on Pourbaix diagrams. The only difference is the use 
of a different criterion to discard points. When constructing a predominance diagram, a three- 

v n species point (where a b  b =-  @ = a~ d) is kept only if ab b is greater than an for all other dissolved 
species, M n . 

When the procedure is completed, the E - p H  field is divided into regions which show the 
dominance of  individual ions. The boundaries between the regions are given by the condition of  
Equation 45 and the equations of the straight lines joining the points are given by Equation 46. 

7. Examples of diagrams 

7.1. Uranium and chromium Pourbaix diagrams 

The program was implemented in BASIC on an IBM-PC/AT personal computer. Hard copies of 
the diagrams were obtained with either a dot matrix printer or a plotter. 

An example of a diagram for the U - H - O  system is shown in Fig. 1. The three-phase lines are 
parallel as expected. The program automatically prints the code number for the stable solid phase 
at the value of  E and pH given by the arithmetic average of  the values at the vertices of  the stability 
field for that solid. Constant activity lines are shown as light dashed lines at values of au of 1, 10 s 
and 10 8. 

A very different diagram is obtained when F -  ion is maintained at an activity of  a F_ = 10 -4. This 
diagram is shown in Fig. 2. A number of  solids containing fluorine are stable and the contours of 
constant uranium activity have been significantly altered. Because this is a four-element system, i.e. 
U, O, H and F, the three-phase lines are no longer always parallel. Increasing the F -  concentration 
does not change the solids present, but does shift the stability fields and the contours of constant 
uranium activity. 

Addition of CO2 to the system at an activity of aco2 = 3.3 x 10 -4 changes the activity contours 
slightly but the solids remain unchanged (Fig. 3). (The activity of CO2 in air at atmospheric pressure 

3 

[a3 0 

- i  

- 3  

0 UO 2(OH) 2"H20 

- U 3 0 8  

U307 U409 

o~ 5i si 0% 
:. ..... . :. 

o 

i 2 3 4 5 6 7 8 g if] ii 12 13 

pH 
14 

Fig. 1. Pourbaix diagram for the U-H-O 
system. Constant uranium activity contours at 
a U = 1, 10 -s and 10 -8 are shown as dotted 
lines (0, 5 and 8, respectively). 
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Fig. 2. Pourbaix diagram for the U - H - O - F  
system. Fluoride ion activity fixed at a v_ = 
10 -4 . Constant uranium activity contours at 
a u = 1, 10 s and 10 -8 are shown as dotted 
lines (0, 5 and 8, respectively). 

is approximately 3.3 x 10-4.) The Pourbaix diagram when both  F -  and CO2 are present is shown 
in Fig. 4. 

The Pourbaix diagram for the ch romium system ( C r - H  O) is shown in Fig. 5. The three-phase 
lines are parallel. Contours  o f  constant  activity are shown at ac, = 1, 10 -4 and 10 -8. The Pourbaix 
diagrams for the C r - H - O - C 1  system with %1 = 0.1 and % = 1 were also computed.  Within 
the error o f  the plotter, these diagrams are identical to Fig. 5. These results indicate either that  C1- 
ions do not  influence the equilibrium phase chemistry in this system or that  impor tan t  species 
containing these elements were not  included in the data  base used. 

7.2. U r a n i u m  a n d  c h r o m i u m  p r e d o m i n a n c e  d i a g r a m  

The predominance diagram for the uranium system ( U - H - O )  system is shown in Fig. 6. Addi t ion  
o f  F ion at an activity o f  a v_ = 10 -4 greatly changes the dominan t  ions. Two complex species 
containing fluorine, U F  4 and UO2 F2 , now appear  a m o n g  the dominan t  dissolved species, replacing 
UO~ + and (UO2)2(0H)~ + (see Fig. 7). Increasing a F_ further alters the d iagram in the direction o f  
greater stability o f  the fluoride complex ions as expected. 

LL] 0 

- i  

-2 

-3 

UO 2 (OH) 2 �9 H20 

O! iO 

: i i ........ ::::::: ........... o 
0 5~ 8~ U02 i 

!8 ~5 

U 

, I , I , I , p , I . ,  I , ~ i I i ~ , I , I , r , I , 

1 2 3 4 5 6 7 8 9 113 i1 12 13 

pH 
14 

Fig. 3. Pourbaix diagram for the U H - O - C  
system. Carbon dioxide activity fixed at aco z = 
3.3 x 10 -4. Constant uranium activity contours 
at a u = 1, 10 5 and 10 8 are shown as 
dotted lines (0, 5 and 8, respectively). Carbon- 
ates were the only carbon-containing species 
used in data base for this diagram. 
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Fig. 4. Pourbaix diagram for the U - H - O  
F - C  system. Fluoride ion activity fixed at 
%o 2 = 3.3 x 10 -4. Constant  uranium activity 
contours at a u = 1, 10 .5 and 10 -8 are shown 
as dotted lines (0, 5 and 8, respectively). Car- 
bonates were the only carbon-containing 
species used in data base for this diagram. 

C r O  3 

LU 0 

CrO 2 

........... :::::::..,.......:.,:::: ......... 
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0~ 

4~ 8~ ~8 
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pH 

Fig. 5. Pourbaix diagram for the C r - H - O  
system. Constant  chromium activity contours 
at ac~ = 1, I0 -4 and 10 .8 are shown as dotted 
lines (0, 5 and 8, respectively). 
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pH 
Fig. 6. Predominance diagram for the U H -  
O system. 
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Fig. 7. Predominance diagram for the U - H -  
O - F  system. Fluoride ion activity fixed at 
a F _  ~ I 0  - 4 .  
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Fig. 8. Predominance diagram for the U - H -  
O - C  system. Carbon dioxide activity fixed at 
aco 2 = 3.3 x 10 -4. Carbonates were the 
only carbon-containing species used in data 
base for this diagram. 
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Fig. 9. Predominance diagram for U - H - O  
F - C  system. Fluoride ion activity fixed at 
a F_ = 10 -4. Carbon dioxide activity fixed at 
3.3 x 10 4. Carbonates were the only carbon- 
containing species used in data base for this 
diagram. 
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Fig. 10. Predominance diagram for the Cr -  
H O system. 

When CO2 is added to the system at an activity ofac% = 3.3 x 10 -4,  the predominance diagram 
is significantly changed. The carbonate complex ion UO2(CO3) 4- becomes dominant at high 
potential and pH (compare Figs 6 and 8). A predominance diagram for the uranium system with 
both a v = l0 4 and aco2 = 3.3 x 10 .4  is shown in Fig. 9. 

The predominance diagram for chromium (Cr-H-O)  is shown in Fig. 10. The predominance 
diagram for the Cr -H-O-C1  system at %1 = 0.01 is identical to that when C1 is absent. If the 
activity of Cl is increased to % = 1.0, the CrO3CI- ion becomes dominant only at pH < 0.1 and 
E > 1.4. These results are consistent with the lack of influence of the activity of C1- on the 
calculated Pourbaix diagrams. 

8. Discussion 

8.1. Pourbaix diagrams and predominance diagrams 

Potential-pH diagrams which show the stability fields of the solids and the contours of a M are called 
Pourbaix diagrams; potential-pH diagrams which show the regions of domainance of dissolved 
species have been called predominance diagrams. The two diagrams are often superimposed to show 
the dominant dissolved species in each part of the solid stability field [2, 3]. 

It is important to keep the distinction between the two types of diagrams clear. In some studies 
a 'hybrid' type of predominance diagram of dissolved and solid species has been presented. A 
Pourbaix diagram is most useful when the stability fields of the solids are calculated using all 
dissolved species. On the other hand, a predominance diagram is most useful when it contains only 
dissolved species and, moreover, when the diagram is constructed in such a way as to be independent 
of concentration [17]. 

It must be emphasized that the 'hybrid' potential-pH diagrams can not show true solid-aqueous 
phase boundaries (contours of constant aM) because non-major dissolved species are excluded when 
determining the boundaries. The solid-aqueous boundaries are, in general, curved lines and do not 
form a polygonal structure in the E-pH field. Only in the special cases where the concentration of 
the dominant ion is very much greater than the concentration of all other ions are the solid-aqueous 
boundaries straight lines. 

The procedure recommended here gives diagrams which are more closely related to experimentally 
determined diagrams and, moreover, is consistent with the original conception of Pourbaix [1]. 
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8.2. Computational method and equation balancing 

After choosing the primitive species and entering the stoichiometric coefficients and standard 
potentials for the formation reactions, no further balancing of chemical reactions is required. 
Furthermore, there is no distinction between reactions involving a redox transition of M and those 
that do not; all reactions are written as formation reactions from the primitive species. One great 
advantage of this procedure is that species can be eliminated or added at will to the data set without 
changing the algebraic structure of the problem. 

Furthermore, it can be noted from Equation 32 that the activities, a~, of all species can be solved 
sequentially rather than simultaneously if the activities of the primitive species are known. This 
provides great computational simplification. However, if the concentrations of the dissolved species, 
[M~], are desired, then a simultaneous solution of the equations must be performed. This is because 
the concentrations are related to the activities through the relation [Mi] = ai/y~, where y~ is, in 
general, a function of the concentrations of all other species. 

8.3. Mole balance and atom balance constraints 

The computational methods described here are extremely efficient for situations where the equilib- 
rium state is defined by imposed constraints of constant chemical potential; for example, when CO2 
activity is fixed. There are situations, however, when the equilibrium state is defined by a mole or 
atom balance constraint. Often the total moles of related dissolved species, e.g. H2CO3, HCO;- and 
CO~- are constant; a case of this type involving dissolved H2S, HS- and S 2- has been described by 
McDonald and Syrett [23]. The general methods described here, with slight extension, can be applied 
to these situations. 

One method to achieve a mole balance on related dissolved species, e.g. CO~-, HCO3 and H2CO3, 
is to perform an iterative calculation. The activity of the appropriate primitive species, e.g. CO2, 
would be varied until the total concentration, [C] -= [CO~-] + [HCO~-] + [H2CO3] , reached the 
desired value. In the more general case the dissolved species may form other complexes and this 
must be taken into account. For example, for the uranium system the total carbonate concentra- 
tion will be given by [C] - [CO~ ] + [HCO~-] + [H2CO3] + [UO2(CO3)] + 2[UO2(CO3)~-] + 
3[UO2(CO3);41. 

Another option is to derive the specific equilibrium relationship between the activity of the 
primitive species, e.g. aco2, and the total concentration, [C], of related species. This expression can 
be used to replace ax in the equations which define the potential-pH diagram. Diagrams drawn in 
this manner would describe the situation where [C] was held constant. Since the details of this 
approach are specific to the particular application, they are not further described. 

Improper choice of constraints can lead to calculated diagrams which are wildly unrealistic. For 
example, using CO32- as a primitive species at low pH and fixing aco~- = 1 would imply enormous 
CO2 pressures. Similar effects can be present when dealing with ions that are strongly complexed, 
e.g. C1- ions in copper solutions. In this case a constraint of total chlorine concentration might be 
more appropriate than a constraint of fixed activity of C1-. In all cases it is essential that the 
calculations be performed while keeping in mind the chemistry of the system. 

8.4. Additional redox elements 

The computational method automatically allows the incorporation of other elements which may 
undergo redox transitions. For example, consider the Fe system in the presence of H20 and gaseous 
CO2. If the data base for the solid iron compounds includes iron carbide as well as the solid 
carbonates and oxides, the methods will produce a diagram in which the stable carbide phases, if 
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any, are shown. The s tandard  format ion reaction in this case would be 

Fe = �89 - �89 + 3Z-H20 - 4H+ - ~e (47) 

(Carbide phases were not  included in the data  based used to generate Figs 1 th rough  5.) 
This procedure provides great flexibility and generality in developing p o t e n t i a l - p H  diagrams for 

specific applications. Fo r  example, in hydrometal lurgical  processes it might  be useful to develop 
diagrams in which the partial pressure o f  H2 S is controlled. 

One can also develop diagrams in which 02 replaces H 2 0  as the primitive species supplying 
oxygen. Consider for example, the s tandard reactions for Fe(OH)3. 

Fe = Fe(OH)3 - 302 - 3H + - 3e (48) 

Equat ions analogous to Equat ion 48 would be useful in describing situations where the oxygen 
partial pressure and the pH were controlled. In  both  Equat ions  47 and 48 note that  zi, the 
stoichiometric coefficient for the electrons, no longer has the simple interpretation as the electro- 
chemical valence o f  iron in Fe3 C or Fe(OH)3. This is simply because other elements (C and O) are 
also changing their oxidation state. 

The chemical potential  o f  the addit ional redox elements, e.g. C and O in the above examples, is 
fixed by fixing the chemical potentials o f  the primitive species in question. The chemical potential 
o f  the pr imary redox element, Fe in the above examples, is allowed to vary. One could contemplate 
diagrams in which the chemical potentials o f  both  redox species were allowed to vary. In  order to 
reduce the corresponding diagram to two dimensions it would  be necessary to fix one other chemical 
potential, most  likely the pH. 
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